Thursday, 6 July 2017

Filtro Digital Médio Em Movimento


Um filtro digital fácil de usar A média móvel exponencial (EMA) é um tipo de filtro de resposta de impulso infinito (IIR) que pode ser usado em muitas aplicações DSP incorporadas. Requer apenas uma pequena quantidade de RAM e poder de computação. O que é um Filter Filters vem em formas analógicas e digitais e existe para remover freqüências específicas de um sinal. Um filtro analógico comum é o filtro RC de passagem baixa mostrado abaixo. Os filtros analógicos são caracterizados pela resposta de freqüência que é o quanto as freqüências são atenuadas (resposta de magnitude) e deslocadas (resposta de fase). A resposta de freqüência pode ser analisada usando uma transformada de Laplace que define uma função de transferência no domínio S. Para o circuito acima, a função de transferência é dada por: Para R é igual a um quilo-ohm e C é igual a um microfarad, a resposta de magnitude é mostrada abaixo. Observe que o eixo dos x é logarítmico (cada marca é 10 vezes maior que a última). O eixo y está em decibéis (o que é uma função logarítmica da saída). A frequência de corte para este filtro é de 1000 rads ou 160 Hz. Este é o ponto em que menos da metade do poder em uma determinada freqüência é transferida da entrada para a saída do filtro. Os filtros analógicos devem ser usados ​​em projetos embutidos quando amostragem de um sinal usando um conversor analógico para digital (ADC). O ADC apenas captura freqüências que são até metade da freqüência de amostragem. Por exemplo, se o ADC adquire 320 amostras por segundo, o filtro acima (com uma freqüência de corte de 160Hz) é colocado entre o sinal ea entrada ADC para evitar aliasing (que é um fenômeno onde as freqüências mais altas aparecem no sinal amostrado como Freqüências mais baixas). Filtros digitais Os filtros digitais atenuam as freqüências em software em vez de usar componentes analógicos. Sua implementação inclui amostragem dos sinais analógicos com um ADC, em seguida, aplicando um algoritmo de software. Duas abordagens de design comuns para filtragem digital são filtros FIR e filtros IIR. Os filtros Filtros de Filtros finitos de Resposta a Impulso (FIR) utilizam um número finito de amostras para gerar a saída. Uma média móvel simples é um exemplo de um filtro FIR de baixa passagem. As freqüências mais altas são atenuadas porque a média suaviza o sinal. O filtro é finito porque a saída do filtro é determinada por um número finito de amostras de entrada. Como exemplo, um filtro de média móvel de 12 pontos acrescenta as 12 amostras mais recentes, em seguida, divide-se por 12. A saída de filtros IIR é determinada por (até) um número infinito de amostras de entrada. Filtros IIR Os filtros Infinite Impulse Response (IIR) são um tipo de filtro digital onde a saída é inifinetelyin teoria de qualquer forma influenciada por uma entrada. A média móvel exponencial é um exemplo de um filtro IIR de passagem baixa. Filtro médio exponencial exponencial Uma média móvel exponencial (EMA) aplica pesos exponenciais a cada amostra para calcular uma média. Embora isso pareça complicado, a equação conhecida em linguagem de filtragem digital como a equação de diferença para calcular a saída é simples. Na equação abaixo, y é a saída x é a entrada e alfa é uma constante que define a freqüência de corte. Para analisar como esse filtro afeta a freqüência da saída, a função de transferência do domínio Z é usada. A resposta de magnitude é mostrada abaixo para alfa igual a 0,5. O eixo dos e é, novamente, mostrado em decibéis. O eixo dos x é logarítmico de 0,001 a pi. A freqüência do mundo real se correlaciona com o eixo x, sendo zero a tensão CC e sendo igual a metade da frequência de amostragem. Quaisquer freqüências que são maiores que metade da freqüência de amostragem serão alias. Como mencionado, um filtro analógico pode garantir que praticamente todas as freqüências no sinal digital estão abaixo da metade da freqüência de amostragem. O filtro EMA é benéfico em projetos incorporados por dois motivos. Primeiro, é fácil ajustar a freqüência de corte. Diminuir o valor do alfa diminuirá a freqüência de corte do filtro como ilustrado pela comparação do gráfico alfa 0.5 acima com o gráfico abaixo, onde alfa 0.1. Em segundo lugar, o EMA é fácil de codificar e requer apenas uma pequena quantidade de energia e memória informática. A implementação do código do filtro usa a equação de diferença. Existem duas operações de múltiplas operações e uma operação de adição para cada saída. Isso ignora as operações necessárias para arredondar matemática de ponto fixo. Somente a amostra mais recente deve ser armazenada na RAM. Isto é substancialmente menor do que o uso de um filtro de média móvel simples com N pontos que requer N operações de multiplicação e adição, bem como N amostras a serem armazenadas na RAM. O código a seguir implementa o filtro EMA usando matemática de ponto fixo de 32 bits. O código abaixo é um exemplo de como usar a função acima. Os filtros de conclusão, tanto analógicos como digitais, são parte essencial dos projetos incorporados. Eles permitem aos desenvolvedores se livrar de freqüências indesejadas ao analisar a entrada do sensor. Para que os filtros digitais sejam úteis, os filtros analógicos devem remover todas as frequências acima da metade da frequência de amostragem. Os filtros digitais IIR podem ser ferramentas poderosas no design incorporado, onde os recursos são limitados. A média móvel exponencial (EMA) é um exemplo de um filtro que funciona bem em projetos incorporados por causa da baixa memória e requisitos de energia de computação. Um filtro digital introdutório Bem aberto MicroModeler DSP e selecione um filtro digital da barra de ferramentas na parte superior e Arraste-o para a nossa aplicação. Bem, escolha um filtro de média móvel porque é um dos tipos mais simples de filtros. Depois de soltar o filtro, as telas serão atualizadas automaticamente. (Clique para iniciar o MicroModeler DSP em uma nova janela) Todos sabemos o que é uma média - adicione os números juntos e divida por quantos existem. Um filtro médio móvel faz exatamente isso. Ele armazena um histórico dos últimos N números e produz sua média. Toda vez que um novo número entra, a média é efetivamente recalculada das amostras armazenadas e um novo número é emitido. A resposta de freqüência de um filtro No canto superior direito, vemos o gráfico de Magnitude vs Frequência, ou a quantidade de freqüências diferentes serão amplificadas ou reduzidas pelo filtro médio móvel. Como você pode esperar, a média das últimas N amostras aplicará algum tipo de suavização ao sinal, mantendo as baixas freqüências e removendo as altas freqüências. Podemos controlar o número de entradas anteriores, ou amostras que mede, ajustando o comprimento do filtro, N. Ao ajustar isso, podemos ver que temos algum controle básico sobre quais passagens podem ser passadas e descartadas. O interior de um filtro Se olharmos a visão da estrutura, podemos ver o que o interior de um filtro médio móvel pode parecer. O diagrama foi anotado para mostrar o significado dos diferentes símbolos. Os símbolos Z-1 significam atraso em uma amostra de tempo e os símbolos significam adicionar ou combinar os sinais. As setas significam multiplicar (pense amplificar, reduzir ou dimensionar) o sinal pela quantidade mostrada à direita da seta. Para uma média de 5 amostras, tomamos um quinto (0.2) da amostra mais recente, um quinto da segunda amostra mais recente e assim por diante. A cadeia de atrasos é chamada de linha de atraso, com o sinal de entrada atrasado por um passo de tempo adicional à medida que você segue a linha de atraso. As setas também são chamadas de torneiras, de modo que você quase pode imaginar elas como torneiras como a que está na pia da cozinha que são todas um quinto aberto. Você poderia imaginar o sinal que flui da esquerda e sendo progressivamente atrasado à medida que se move ao longo da linha de atraso, depois recombinado em diferentes forças através das torneiras para formar a saída. Também deve ser fácil ver que a saída do filtro será: Qual é o equivalente à média das últimas 5 amostras. (Entrada t-N significa a entrada atrasada do tempo t-N) Na prática, o código gerado pelo MicroModeler DSP usará truques para fazer isso de forma mais eficiente, de modo que apenas as primeiras e as últimas amostras precisam ser envolvidas, mas o diagrama é bom para fins ilustrativos. Se você pode entender isso, então, você pode ter uma idéia do que é um filtro FIR. Um filtro FIR é idêntico ao filtro de média móvel, mas em vez de todas as forças da torneira serem as mesmas, elas podem ser diferentes. Aqui temos um filtro médio móvel e um filtro FIR. Você pode ver que eles são estruturalmente os mesmos, a única diferença é os pontos fortes das torneiras. A próxima seção irá apresentá-lo aos filtros de Resposta de Impulso Finito (FIR). Ao variar as forças de toque, podemos criar perto de qualquer resposta de freqüência que queremos. Processamento de sinais Filtros digitais Os filtros digitais são, por essência, sistemas amostrados. Os sinais de entrada e saída são representados por amostras com distância de tempo igual. Os filtros de resposta de Implulgação finita (FIR) são caracterizados por uma resposta de tempo dependendo apenas de um dado número das últimas amostras do sinal de entrada. Em outros termos: uma vez que o sinal de entrada caiu para zero, a saída do filtro fará o mesmo após um determinado número de períodos de amostragem. A saída y (k) é dada por uma combinação linear das últimas amostras de entrada x (k i). Os coeficientes b (i) dão o peso para a combinação. Eles também correspondem aos coeficientes do numerador da função de transferência de filtro do domínio z. A figura a seguir mostra um filtro FIR da ordem N 1: Para os filtros de fase linear, os valores dos coeficientes são simétricos em torno do meio e a linha de atraso pode ser dobrada em volta desse ponto do meio para reduzir o número de multiplicações. A função de transferência de filtros FIR apenas permite um numerador. Isso corresponde a um filtro totalmente zero. Os filtros FIR normalmente requerem pedidos elevados, na magnitude de várias centenas. Assim, a escolha deste tipo de filtros precisará de uma grande quantidade de hardware ou CPU. Apesar disso, uma das razões para escolher uma implementação do filtro FIR é a capacidade de alcançar uma resposta de fase linear, o que pode ser um requisito em alguns casos. No entanto, o designer fiter tem a possibilidade de escolher filtros IIR com uma boa linearidade de fase na banda passante, como os filtros Bessel. Ou para projetar um filtro allpass para corrigir a resposta de fase de um filtro IIR padrão. Filtros médios móveis (MA) Os modelos Editar modelo médio móvel (MA) são modelos de processo na forma: os processos MA são uma representação alternativa dos filtros FIR. Filtros médios Editar Um filtro calculando a média das N últimas amostras de um sinal É a forma mais simples de um filtro FIR, sendo todos os coeficientes iguais. A função de transferência de um filtro médio é dada por: A função de transferência de um filtro médio possui N zeros igualmente espaçados ao longo do eixo de freqüência. No entanto, o zero em DC é mascarado pelo pólo do filtro. Por isso, existe um lóbulo maior, um DC que explica a banda de passagem do filtro. Filtros Integrator-Comb (CIC) em cascata Edit A O filtro integrador-pente em cascata (CIC) é uma técnica especial para a implementação de filtros médios colocados em série. A colocação em série dos filtros médios melhora o primeiro lobo em DC em comparação com todos os outros lóbulos. Um filtro CIC implementa a função de transferência de N filtros médios, cada um calculando a média de amostras R M. Sua função de transferência é assim dada por: os filtros CIC são usados ​​para dizimar o número de amostras de um sinal por um fator de R ou, em outros termos, reescrever um sinal a uma freqüência mais baixa, descartando amostras R 1 de R. O fator M indica quanto do primeiro lobo é usado pelo sinal. O número de estádios de filtro médio, N. Indica quão bem outras bandas de freqüência são amortecidas, à custa de uma função de transferência menos plana em torno de DC. A estrutura CIC permite implementar todo o sistema com apenas agregadores e registros, não usando multiplicadores que sejam gananciosos em termos de hardware. O downsampling por um fator de R permite aumentar a resolução do sinal pelos bits log 2 (R) (R). Filtros canônicos Edit Canonical filters implementam uma função de transferência de filtro com vários elementos de atraso iguais à ordem do filtro, um multiplicador por coeficiente de numerador, um multiplicador por coeficiente de denominador e uma série de elementos de som. De forma semelhante às estruturas canónicas de filtros ativos, esse tipo de circuitos mostrou-se muito sensível aos valores dos elementos: uma pequena alteração em coeficientes teve um grande efeito na função de transferência. Aqui também, o design de filtros ativos mudou de filtros canônicos para outras estruturas, como cadeias de seções de segunda ordem ou filtros de salto. Cadeia de secções de segunda ordem Editar uma seção de segunda ordem. Muitas vezes referido como biquad. Implementa uma função de transferência de segunda ordem. A função de transferência de um filtro pode ser dividida em um produto de funções de transferência associadas a um par de pólos e possivelmente um par de zeros. Se a ordem das funções de transferência for estranha, então uma seção de primeira ordem deve ser adicionada à cadeia. Esta seção está associada ao pólo real e ao zero real se houver um. Forma direta 1 forma direta 2 forma direta 1 transposição de forma direta 2 transposta A forma direta 2 transposta da figura a seguir é especialmente interessante em termos de hardware exigido, bem como a quantificação de sinal e coeficiente. Digital Leapfrog Filters Editar estrutura de filtro Editar filtros de salto digital base na simulação de filtros de salto analógico ativo. O incentivo para esta escolha é herdar das excelentes propriedades de sensibilidade à banda passante do circuito de escada original. O seguinte filtro de 4passões de allpass do allpass do pólo pode ser implementado como um circuito digital, substituindo os integradores analógicos por acumuladores. A substituição dos integradores analógicos por acumuladores corresponde a simplificar a transformada Z em z 1 s T. Quais são os dois primeiros termos da série Taylor de z e x p (s T). Essa aproximação é boa o suficiente para filtros onde a freqüência de amostragem é muito maior do que a largura de banda do sinal. Transferir Função A representação do espaço de estado do filtro precedente pode ser escrita como: A partir deste conjunto de equações, pode-se escrever as matrizes A, B, C, D como: A partir desta representação, as ferramentas de processamento de sinais, como Octave ou Matlab, permitem traçar A resposta de freqüência dos filtros ou para examinar seus zeros e pólos. No filtro de salto digital, os valores relativos dos coeficientes definem a forma da função de transferência (Butterworth. Chebyshev.), Enquanto suas amplitudes definem a freqüência de corte. Dividir todos os coeficientes por um fator de dois desloca a frequência de corte para baixo em uma oitava (também um fator de dois). Um caso especial é o filtro Buterworth de 3ª ordem, que possui constantes de tempo com valores relativos de 1, 12 e 1. Devido a isso, este filtro pode ser implementado em hardware sem qualquer multiplicador, mas usando mudanças em vez disso. Os modelos Autoregressive Filters (AR) Edit Autoregressive Filters (AR) Edit Autoregressive (AR) são modelos de processo na forma: Onde u (n) é a saída do modelo, x (n) é a entrada do modelo e u (n - m) são anteriores Amostras do valor de saída do modelo. Esses filtros são chamados de autorregressivos porque os valores de saída são calculados com base em regressões dos valores de saída anteriores. Os processos AR podem ser representados por um filtro de todos os pólos. Filtros ARMA Edit Autoregressive Moving-Average (ARMA) filtros são combinações de AR e MA filtros. A saída do filtro é dada como uma combinação linear tanto da entrada ponderada como das amostras de saída ponderadas: os processos ARMA podem ser considerados como um filtro IIR digital, com pólos e zeros. Os filtros AR são preferidos em muitos casos porque podem ser analisados ​​usando as equações de Yule-Walker. Os processos MA e ARMA, por outro lado, podem ser analisados ​​por equações não-lineares complicadas, difíceis de estudar e modelar. Se tivermos um processo AR com coeficientes de peso de toque a (um vetor de a (n), a (n - 1).) Uma entrada de x (n). E uma saída de y (n). Podemos usar as equações de Yule-Walker. Dizemos que x 2 é a variância do sinal de entrada. Tratamos o sinal de dados de entrada como um sinal aleatório, mesmo que seja um sinal determinista, porque não sabemos qual será o valor até que o receba. Podemos expressar as equações de Yule-Walker como: Onde R é a matriz de correlação cruzada da saída do processo E r é a matriz de autocorrelação da saída do processo: Variance Edit Podemos mostrar que: Podemos expressar a variância do sinal de entrada como: Ou , Expandindo e substituindo in para r (0). Podemos relacionar a variância de saída do processo com a variância de entrada:

No comments:

Post a Comment